= BelLLAMARE

SYNCHRO Timer

USER MANUAL

Manual Reference: UM_SYNCHRO-Timer_0226_revA1

Bellamare, LLC
www.bellamare-us.com
San Diego, California - USA

info@bellamare-us.com
Tel: +1 (858) 578-8108

1= BeLLAMARE

Page 1 of 36

Table of Content

1. Introduction
1.1 Purpose of SYNCHRO Timer
1.2 How SYNCHRO Timer Works (Concept)
1.3 System Overview
1.4 Intended Use
2. Technical Specifications
2.1 Mechanical
2.2 Electrical
2.3 Power Autonomy
2.4 Interfaces
2.5 Software Interface
3. Hardware Description
3.1 Mechanical Construction
3.1.1 End-Cap & Access
3.2 Electrical Architecture
3.2.1 Power Switching
3.2.2 Timing and Control
3.2.3 Status Indication
3.3 Battery System
3.3.1 AAA Battery Pack (Control Power)
3.3.2 Coin-Cell Battery (RTC Backup)
4. Installation & Configuration
4.1 Opening the Unit
4.2 Connecting to the Microcontroller
4.3 Arduino IDE Setup (Optional — Firmware Modification Only)
4.3.1 Install Arduino IDE
4.3.2 Install Seeed nRF52840 Board Package
4.3.3 Required Libraries
4.4 Selecting Board and Port
4.5 Serial Configuration Procedure
4.6 Setting the RTC (Optional)
4.7 Configuring Mission Timing
4.8 Saving to Flash Memory
4.9 LED Behavior During Operation
5. Deployment Procedure
5.1 Settings Verification
5.2 O-Ring Inspection and Preparation
5.3 Closing the Enclosure

1= BeLLAMARE

© ©W o N NN OO~ A

NN NDND N N DNDNDDN A A A (A
= A A O 0 0O 0N OO, ONMNN-2OOO©©

Page 2 of 36

5.4 Connecting External Power and Instrument 21

5.5 Functional Test Prior to Deployment 22
6. Maintenance & Corrosion Prevention 23
6.1 Routine Surface Protection 23
6.2 Post-Recovery Procedure 23
6.3 Inspection and Corrosion Treatment 23
6.4 O-Ring Replacement 23
7. Included Items & Accessories 24
7.1 Included Items 24
7.2 Optional Accessories 24
7.3 Support Services 24
8. Legal Notices and Warranty 25
8.1 General Disclaimer 25
8.2 Safety Warnings 25
8.3 Electrical Responsibility 25
8.4 Warranty 25
8.5 Intellectual Property 26
8.6 Data Responsibility 26
9. My Notes 36
1= BelLLAMARE

Page 3 of 36

1. Introduction

1.1 Purpose of SYNCHRO Timer

The SYNCHRO Timer is a low-power autonomous scheduling module designed to eliminate wasted
energy during oceanographic and subsea deployments.

Many instruments consume power continuously, even when data acquisition is not required. SYNCHRO
Timer addresses this inefficiency by physically disconnecting the main power path outside of predefined
operating windows. By powering instruments only when they are needed, SYNCHRO Timer significantly
extends deployment duration without increasing battery size or system complexity.

Simple, reliable, and autonomous, SYNCHRO Timer enables longer missions while preserving valuable
onboard energy resources.

1.2 How SYNCHRO Timer Works (Concept)

SYNCHRO Timer operates as an intelligent inline power switch placed between an external battery pack
and a subsea instrument.

Internally, the system combines:
e A low-power microcontroller (Seeed Studio XIAO nRF52840)
e A precision Real-Time Clock (DS3231)
e A MOSFET-based power switching stage

The Real-Time Clock maintains accurate timekeeping. The microcontroller uses this time reference to
determine when power should be enabled or disabled. At scheduled intervals, the microcontroller
activates the MOSFET, closing the main power path and allowing current to flow to the connected
instrument. When the programmed on-duration expires, the MOSFET opens the circuit, completely
isolating the instrument from the battery supply.

This architecture ensures:
e Precise timing control
e Extremely low standby consumption
e Reliable operation over long deployments

SYNCHRO Timer’s internal AAA batteries power only the control electronics and switching circuitry. The
connected instrument is powered exclusively by the external battery pack.

1= BeLLAMARE

Page 4 of 36

1.3 System Overview

SYNCHRO Timer consists of a pressure-rated cylindrical housing with integrated power connectors and
an internal electronics assembly mounted to the removable end-cap.

Key external features include:

Power input connector (MCBH2M)

Power output connector (MCBH2F)

Acrylic sight glass for LED status indication
Removable threaded end-cap with dual O-ring seals

Fig. 1: Overall Product View

The enclosure is available in:
e Hard-anodized 6061-T6 aluminum for deep-water applications
e Acetal for shallower deployments

The system is configured via a USB-C connection to the internal microcontroller using the Arduino IDE.
Once configured and armed, SYNCHRO Timer operates fully autonomously without external
communication.

1.4 Intended Use

SYNCHRO Timer is designed for:
e Oceanographic instrument scheduling
e Intermittent sensor activation
e Battery-powered subsea systems
e Long-duration autonomous deployments

The device is intended to be installed inline between a battery pack and a compatible DC-powered
instrument within its specified voltage and depth ratings.

« BeLLAMARE
Page 5 of 36

2. Technical Specifications

2.1 Mechanical
Housing Options:

Deep-Water Version
e Material: Hard-anodized 6061-T6 aluminum
e Maximum Depth Rating: 4,500 meters
e \Weight: 2.5 Ib (in air), 1.25 Ib (in water)

Shallow-Water Version
e Material: Acetal
e Maximum Depth Rating: 500 meters
e Weight: 1.5 1b (in air), 0.25 Ib (in water)

Dimensions
e Length:7.5in
o Outer Diameter: 2.5 in

Sealing
e Dual O-ring design
e O-rings: 2 x #134 Buna-N (end-cap bore)

@75.5mm [@2.97in]
©63.5mm [22.5in] &, -

@73mm [@2.88in]

————— 195mm [7.65in]

End-cap

Fig. 2: SYNCHRO Timer Mechanical Dimensions

= BelLLAMARE
Page 6 of 36

2.2 Electrical

Input Voltage Range
e 6-28VDC
e Maximum current: 10 A

Control Power Source
e 3 x AAA batteries (internal)

RTC Backup
e 1 x CR1220 coin-cell battery

Power Switching
e MOSFET-based solid-state switching
e Full disconnection of output power when OFF

Control Electronics

e Microcontroller: Seeed Studio XIAO nRF52840
e Real-Time Clock: DS3231

2.3 Power Autonomy

Autonomy values below reflect conservative estimates for cold-water deployment conditions (0-5 °C).

Duty Cycle Cold Alkaline AAA Cold Lithium AAA
2 hours per day ~3—-4 weeks ~6-7 weeks
1 hour per day ~5-6 weeks ~10 weeks
10 min per hour ~2 weeks ~3—4 weeks

Recommended battery types:
e Alkaline: Duracell Coppertop or Energizer Max
e Lithium: Energizer Ultimate Lithium AAA

2.4 Interfaces

Power Input
e MCBH2M (2-pin male)

Power Output
e MCBH2F (2-pin female)

Configuration Interface
e Internal USB-C serial port

Status Indication
e Green and Red LEDs (visible through acrylic sight glass)

1= BeLLAMARE

Page 7 of 36

2.5 Software Interface

e Configuration via Arduino IDE
e Serial-based interactive mission setup
e Internal flash storage for mission parameters

1= BeLLAMARE

Page 8 of 36

3. Hardware Description

3.1 Mechanical Construction

SYNCHRO Timer consists of a cylindrical pressure-rated housing with a removable threaded end-cap.
The internal electronics assembly is mounted directly to the dry side of the end-cap.

The enclosure is available in two configurations:
e Hard-anodized 6061-T6 aluminum for deep-water applications
e Acetal for shallow-water deployments

The sealing system uses dual #134 Buna-N O-rings installed in the end-cap bores. Proper cleaning and
lubrication of these O-rings are essential to maintain pressure integrity.

Fig. 3: End-Cap Assembly with Electronics and O-rings

3.1.1 End-Cap & Access

The end-cap integrates:
e Power input connector (MCBH2M)
e Power output connector (MCBH2F)
e Internal electronics board

To access the electronics, unthread the end-cap by turning it counter-clockwise. Grip tabs are
integrated into the cap to assist removal. A wrench flat at the base of the cylinder accommodates
a %" wrench if a strong grip of the housing is required during opening.

For deployment, the end-cap must be tightened by hand only. Ensure the cap is fully seated and
flush with the housing before use.

1= BeLLAMARE
>
Page 9 of 36

Fits 3/4" wrench

/

/

End-cap Grip-Tabs

Fig. 4: End-Cap Grip Tabs and Wrench Interface

3.2 Electrical Architecture

SYNCHRO Timer is built around a low-power control architecture designed to minimize standby
consumption while providing precise timing control.

The main components include:
e Seeed Studio XIAO nRF52840 microcontroller
e DS3231 Real-Time Clock (RTC)
e MOSFET-based power switching stage
e Dual status LEDs

3.2.1 Power Switching

The MOSFET functions as a solid-state switch placed inline between the external battery pack
and the connected instrument.
e When activated, the MOSFET closes the main power path, allowing current to flow to the
instrument.
e When deactivated, it opens the circuit, fully isolating the instrument from the battery
supply. This physical disconnection prevents idle drain and extends mission duration.

3.2.2 Timing and Control

The DS3231 Real-Time Clock maintains continuous timekeeping. The microcontroller uses this
time reference to:

e Determine scheduled activation times

e Enable the MOSFET for the programmed duration

e Disable power at the end of each cycle

The RTC can generate hardware alarms that wake the microcontroller from low-power sleep,
ensuring precise scheduling with minimal standby current.

L BeLLAMARE

-

Page 10 of 36

3.2.3 Status Indication

Two internal LEDs provide system feedback:
e Green LED: Power-on and active states
e Red LED: Power-off and configuration events

The LEDs are visible through an acrylic sight glass. During deployment, LED activity is brief and
minimized to conserve power.

LED Sight Glass

Fig. 5: LED Sight Glass

= BeLLAMARE
Page 11 of 36

3.3 Battery System

SYNCHRO Timer uses two independent battery systems, each serving a different function.

XIAO nRF52840

AAA Battery

DS3231 and Coin Cell

AAA Batteries

Fig. 6: Internal Battery Configuration

3.3.1 AAA Battery Pack (Control Power)

Three AAA batteries provide primary operating power for:
e Microcontroller

RTC (when main power is present)

MOSFET gate drive circuitry

LED indicators

These batteries do not power the connected instrument. The instrument is powered exclusively
by the external battery pack connected to the input/output connectors.

To fully stop SYNCHRO Timer’s operation, all three AAA batteries must be removed.

1= BeLLAMARE
>
Page 12 of 36

3.3.2 Coin-Cell Battery (RTC Backup)

A CR1220 coin-cell battery powers the RTC backup supply only.

During normal operation, the RTC is powered from the main AAA supply.
If the AAA batteries are removed or depleted, the RTC automatically switches to the coin-cell
backup source to preserve date and time.

The coin-cell does not power the microcontroller or any other subsystem.

Although capable of multi-year operation, the coin-cell should be replaced annually or prior to any
critical deployment to ensure reliable time retention.

1= BeLLAMARE

Page 13 of 36

4. Installation & Configuration

4.1 Opening the Unit

o Ensure the system is powered OFF.
e Unscrew the end-cap by turning it counter-clockwise.
e Carefully remove the end-cap to expose the internal electronics assembly.

Grip tabs are integrated into the end-cap to assist removal. A %" wrench may be used to stabilize the
housing if required.

4.2 Connecting to the Microcontroller

e Connect a USB-C cable to the Seeed Studio XIAO nRF52840 inside the enclosure.
e Connect the other end to your computer.
e The microcontroller will power from the USB connection.

Note (Setup Only):
During configuration, the microcontroller may be powered directly from USB. The internal AAA batteries
are not required for setup and may be removed to simplify restart and reprogramming.

= BeLLAMARE

Page 14 of 36

4.3 Arduino IDE Setup (Optional — Firmware Modification Onl

The SYNCHRO Timer is delivered with preloaded firmware and does not require the Arduino IDE for
normal operation.

The following steps are required only if you intend to modify, recompile, or upload firmware.

4.3.1 Install Arduino IDE

e Download and install the Arduino IDE from:
https://www.arduino.cc/en/software/

4.3.2 Install Seeed nRF52840 Board Package

e Open Arduino IDE.

e Go to File — Preferences

e In “Additional Boards Manager URLs” paste:
https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json
Click OK.

Go to Tools — Board — Boards Manager

Search for: Seeed nRF52

Install: Seeed XIAO nRF52840

& Switch | Arduino IDE 2.3.7

File Edit Sketch Tools Help
r T
Mew Sketch Ctrl+N MO nRF32
|
MNew Cloud Sketch Alt+Ctd+N
Open.. Col+Q Fpydt 7
Open Recent >
Hin-= 2;
Sketchbook >
Examples > 1
in, INP
Close Ctrl+W
Save Ctrl+s (M{11528
e A Cirl+Shift+
Save As... Ctrl+5hift=5 e te -
ial 8&
Preferences... Ctri+Comma 2
Advanced >
[Eln("Bu
Cuit Ctrl+Q
TRV 77, o T, N, 7,0, L T
« BeLLAMARE
I"

Page 15 of 36

https://www.arduino.cc/en/software/

Theme: Light v

Languag

m

: English v (Reload required)

Show verbose output during [compile (] upload
Compiler warnings None v

(O Verify code after upload
Auto save
(] editor Quick Suggestions

Additional boards manager URLs: https:/files.seeedstudio.com/arduino/package_se

m
]

duino_boards_index.json

/ CANCEL

Fig. 8: Installing Board Package

4.3.3 Required Libraries

If compiling firmware, install:
e Seeed Studio nRF52 board package
e Adafruit RTClib

e Adafruit LittleFS / InternalFileSystem
Failure to install these dependencies will result in compilation errors.

= BeLLAMARE

Page 16 of 36

4.4 Selecting Board and Port

e Go to Tools — Board
Select: Seeed XIAO nRF52840

e Go to Tools — Port
Select the connected COM port (Windows) or USB device (Mac/Linux).

& Minimalsketch | Arduino IDE 23.7

Fil= Edit

Sketch | Teools

Help

i Fcrm #

Minimals

1
2
3
4
B
7
B
a

1B

Archive Sketch
Manage Libraries..
Senial Manitar

Sanal Plotter

Firmware Updater

Upload 551 Root Certificates

Beard: "Seeed XIAQ nRF52840"
Paort: “COM3™
Reload Board Data

Get Board Info

Ceoug: “Leve U (Releass)’

SoftDevice: "5140 7.3.0°

Programmer

Burmn Bootloader

C’t’l £ _

CliShiftsl | 1y

Ctrl+5hift =M

Read(LED_BULLTIN));

> Boards Manager. Ctrl+Shift+B
>
Arduino AVR Boards »
» Seced nRF52 Eoords »
g
bl
:

EI - tically.

(& MinimalSketch | Arduiro IDE 2.3.7

File Edit Skeich Took

ot 1

Archive Sketch

Help

Seeed Tracker T1000 E LoRaWaN
Seeed XIAO nRF52840

Seeed XIAC rRF52840 Sense
Seeed Wio Tracker 1110

Seeed XIAC rRF52840 Plus

Szeed XIAD rRF52840 Sencs Blus

e _

Minimals|
1 Manage Libraries.., Cul+Shifts] | 1mppy 7
Z Serial Monitar Ctri+Shift=M
3
4 Serial Plotter
5
& Firmware Updater
7 Read(LED_BUILTIN]);
8 Upload S5L Root Certificates -
@
1a Board: "Sesed XIAQ nRF32340" >
Port: *COM3" ¥ Seral ports
Reload Board Data COMS [Seeed XIAD nRF52840]
Get Board Info
Debug: “Level O (Release)” ?
= SotiDence "S140 7.2.0" >
Qutput
m Programmer b atically.

Burn

Bootloader

Fig. 9: Selecting Board and Port

= BeLLAMARE

Page 17 of 36

4.5 Serial Configuration Procedure

e Open Tools — Serial Monitor
e Set baud rate to 115200

Pressing reset is safe and restarts the firmware.

OPIES SNV O 394
RIS IR Jepowy

)

X .“'\Z.)
Fig. 10: Serial Monitor and Reset Button

4.6 Setting the RTC (Optional)

At startup, the system prompts:

Power OFF (pin driven LOW)

Would you like to change RTC? (yes/no)

e Enter no to keep the current RTC time.
e Enter yes to manually set date and time.

If “yes” is selected:
Enter time in the format: YYYY-MM-DD HH:MM:SS

=% BELLAMARE
-

If no message appears, press the reset button on the microcontroller.

Page 18 of 36

4.7 Configuring Mission Timing

After RTC confirmation, the system displays current settings:

Start Time

On Duration
Interval

Time until first cycle

You will be prompted: Use these settings? (yes/no)

Loaded settings from flash.

=== SYNCRO SYSTEM CONFIGURATION ===
RTC Time: 2026-02-11T13:07:13

Start Time: 13:10:0

On Duration: 1h Om Os

Interval: 5h Om Os

First cycle starts in: Oh 2m 47s

Use these settings? (yes/no)

If you enter no, you will enter configuration mode.
You will be prompted to enter:

e Start Time [HH:MM:SS]

® On Duration [HH:MM:SS]

e Interval [HH:MM:SS]

After entry, the system summarizes the new configuration and again prompts:

Use these settings? (yes/no)

1= BeLLAMARE

Page 19 of 36

4.8 Saving to Flash Memory
After accepting settings, you will be asked:

Save these settings to flash for next boot?

e Selecting yes stores parameters in non-volatile memory.
e Selecting no applies settings for the current session only.

Once confirmed, the system arms the mission and displays:

Saved to flash.
Next RTC alarm: 2026-02-11T13:25:00

Mission armed.

4.9 LED Behavior During Operation

SYNCHRO Timer uses two internal LEDs for feedback:
During configuration:
e Green LED blinks to confirm accepted inputs.
e Red LED blinks during configuration changes.

When armed and awaiting start:
e Green LED blinks once every 5 seconds.

During operation:
e Green LED blinks briefly when power turns ON.
e Red LED blinks briefly when power turns OFF.

(yes/no)

LED activity is intentionally brief to minimize power consumption during deployment.

1= BeLLAMARE

Page 20 of 36

5. Deployment Procedure

5.1 Settings Verification

Before closing SYNCHRO Timer, verify the following:

Mission timing parameters have been correctly configured.
The RTC clock displays the correct date and time.

AAA batteries are installed and fresh.

The CR1220 coin-cell battery is installed.

5.2 O-Ring Inspection and Preparation

Proper O-ring preparation is critical to maintaining pressure integrity.

Remove the O-rings from the end-cap grooves.

Inspect for cuts, deformation, or contamination.

Clean the O-rings.

Apply a light, even coat of appropriate O-ring grease.

Ensure the O-ring grooves are clean and free of debris.

Inspect the interior bore of the cylinder for dirt, hair, or foreign particles.
Apply a very thin film of O-ring grease to the cylinder sealing surface.

Do not over-grease. Excess lubricant may attract debris.

5.3 Closing the Enclosure

Carefully insert the end-cap into the cylinder.

Thread the end-cap clockwise.

Tighten by hand only.

Ensure the end-cap is fully seated and flush against the cylinder.
Confirm there is no visible gap between cap and housing.

A wrench is not required for final tightening.

5.4 Connecting External Power and Instrument

Mount SYNCHRO Timer securely to the instrumented payload.

Connect the external battery pack to the Power Input (MCBH2M) connector.
Connect the instrument to the Power Output (MCBH2F) connector.

Ensure cables are routed to avoid mechanical stress.

1= BeLLAMARE

Page 21 of 36

5.5 Functional Test Prior to Deployment
Before field deployment:

Connect the external battery pack.

Observe LED behavior.

Confirm scheduled activation and deactivation occur at the programmed times.
Verify the instrument powers ON and OFF as expected.

A full functional test under realistic conditions is strongly recommended before subsea
deployment.

1= BeLLAMARE

Page 22 of 36

6. Maintenance & Corrosion Prevention

6.1 Routine Surface Protection

For long-term or repeated deployments:
e Apply a light protective coating of LPS-3 to all exposed metallic surfaces.
e Wipe off excess product after application.
e Avoid applying lubricant to O-rings or sealing faces unless specifically intended for that purpose.

Protective coating reduces oxidation and galvanic corrosion in saltwater environments.

6.2 Post-Recovery Procedure

After each recovery from seawater:

Rinse the entire enclosure thoroughly with fresh water to remove salt deposits.
Clean with fresh water and mild dish soap if necessary.

Allow the unit to dry completely.

Reapply a light protective coating of LPS-3 before storage.

Salt deposits left on aluminum surfaces accelerate corrosion and pitting.

6.3 Inspection and Corrosion Treatment

If corrosion or pitting is observed:

Remove surface oxidation using a soft wire brush.

Clean the affected area.

Temporarily seal the area with heavy grease if immediate repair is not possible.
For long-term protection, apply epoxy coating.

J-B Weld is recommended for ease of use and adhesion.

6.4 O-Ring Replacement

Replace O-rings if any of the following are observed:

e Cuts, cracking or abrasions
e Permanent deformation
e Flattening

Only use specified replacement O-rings (#134 Buna-N).

1= BeLLAMARE

Page 23 of 36

7. Included Items & Accessories

7.1 Included Items

Each SYNCHRO Timer is delivered in a protective case and includes the following components:

Hardware: 3 x AAA batteries (control power)
1 x CR1220 coin-cell battery (RTC backup)
1 x USB-C cable (3 ft),

2 x #134 Buna-N replacement O-rings

Dummy Plugs*

1 x Input POWER connector plug
e 1 x Output POWER connector plug

* Dummy plugs must be installed whenever connectors are not in use to prevent corrosion

7.2 Optional Accessories

Optional accessories may be available depending on deployment requirements, including:

e Replacement microcontroller and/or RTC
e Custom cable assemblies

7.3 Support Services

Bellamare provides technical support and service options, including:
e Firmware updates

Field Support

Replacement parts

Deployment consultation

For assistance, contact:

Bellamare, LLC
San Diego, California — USA
www.bellamare-us.com
info@bellamare-us.com
Tel: +1 (858) 578-8108

= BeLLAMARE
Page 24 of 36

8. Legal Notices and Warranty

8.1 General Disclaimer

This manual is provided “as is” without warranty of any kind, either express or implied, including but not
limited to the implied warranties of merchantability or fitness for a particular purpose.

Bellamare reserves the right to modify the product, firmware, specifications, or documentation without
prior notice.

8.2 Safety Warnings

Failure to follow proper operating procedures may result in equipment damage, data loss, or personal
injury.

Do not operate SYNCHRO Timer outside of its specified depth rating.
Always remove power before opening the enclosure.

Use only specified connectors, cables, and voltage ranges.

Ensure O-rings are clean and properly lubricated prior to deployment.
Only trained personnel should perform internal modifications or repairs.

8.3 Electrical Responsibility

Improper handling of power connections may result in damage to the device or connected instruments.
Bellamare assumes no responsibility for damage resulting from:

Incorrect wiring

Use outside specified voltage limits
Reverse polarity

Unauthorized modification

Users are responsible for verifying compatibility with external battery systems and instruments.

8.4 Warranty

SYNCHRO Timer is covered by a limited one-year warranty against defects in materials and
workmanship under normal use.

This warranty does not cover:

Damage caused by misuse or improper installation
Unauthorized modifications

Corrosion resulting from inadequate maintenance
Normal wear associated with marine environments

For warranty service or technical support, contact Bellamare.

1= BeLLAMARE

Page 25 of 36

8.5 Intellectual Property

The SYNCHRO Timer hardware and firmware are proprietary systems developed by Bellamare, LLC.
Unauthorized duplication, reverse engineering, or distribution of firmware or hardware designs is
prohibited.

8.6 Data Responsibility

Bellamare is not liable for loss of data, missed acquisition events, or mission failures resulting from the
use or misuse of this product.

Users are solely responsible for verifying correct configuration and performing functional tests prior to
deployment.

1= BeLLAMARE

Page 26 of 36

Appendix 1: Arduino IDE SYNCHRO Timer Sketch

// === SYNCHRO Timer (XIAO nRF52840 / Seeed nRF52) ===
// Reliable polarity-safe power switching + interactive configuration + optional

flash save

#include <Wire.h>

#include "RTClib.h"

#include <Adafruit LittleFS.h>

#include <InternalFileSystem.h>

using namespace Adafruit LittleFS Namespace;

[/ ——mmm————mm—————— PINS —————————————————
const int MOSFET PIN = 0;
const int ledGreen = 9;
const int ledRed = 10;

const int rtcAlarmPin = 3;

const bool ACTIVE LOW false;
const bool DEPLOYMENT MODE = true;

[/ —mmmmmmmmmmmmmm oo RTC —-————-—————————-
RTC_DS3231 rtc;

[/ ————————————————— SEITINGS ==mcosscoeso=s===
struct Settings {
int startH = 12, startM = 45, startS = 0;
int onH = 0, onM = 6, onS = 0;
int intH = 0, intM = 2, int$S = 0;
}i
Settings cfg;

const char* CFG FILE = "/syncro cfg.txt";
bool fsOK = false;

[/ ——mmmmmmmmm STATE ——-——=-——————————-
volatile bool rtcAlarmTriggered = false;
bool initialized = false;

bool waitingForFirstCycle = true;
unsigned long lastPreStartBlink = 0;
bool isFirstCycle = true;

// ===================== Power control =====================
void setPower (bool on) {
int level = on ? HIGH : LOW;
if (ACTIVE LOW) level = (level == HIGH) ? LOW : HIGH;
digitalWrite (MOSFET PIN, level);

1= BeLLAMARE
>
Page 27 of 36

Serial.print ("Power "); Serial.print(on ? "ON" : "OFF");
Serial.print (" (pin driven "); Serial.print(level == HIGH ? "HIGH" : "LOW");
Serial.println(")");

}

J) ==================--- LDS ========—=—=—=———------
void blinkColor (int pin, int duration ms) {
digitalWrite (ledGreen, LOW) ;
digitalWrite (ledRed, LOW) ;
digitalWrite (pin, HIGH) ;
delay (duration ms) ;
digitalWrite (pin, LOW) ;

[======m=mm——————————oc RPIC interrupi Ss=======—=———————————o
void onRTCAlarm () {
rtcAlarmTriggered = true;

// ===================== Serial helpers =====================
String readLineBlocking () {
String s = "";
while (s.length() == 0) {
while (!Serial.available()) delay(10);
s = Serial.readStringUntil ('\n");
s.trim();
}
while (Serial.available()) Serial.read():;
return s;
}
A RelftabilieNyesl/ noNpromp NS e

String getYesNo (const String &prompt) {
String response = "";
while (true) {

while (Serial.available()) Serial.read():;
Serial.println (prompt) ;

while (!Serial.available()) delay(10);
response = Serial.readStringUntil('\n"'");

response.trim() ;

if (response.equalsIgnoreCase ("yes") || response.equalsIgnoreCase ("no"))
return response;

Serial.println("Please type 'yes' or 'no'.");

// ===================== Parsing =====================
bool parseHMS (const String& in, int &h, int &m, int &s, bool isTimeOfDay) {
int ¢l = in.indexOf(':'); int c2 = in.indexOf(':', cl+1);

if (¢l < 0 || c2 < 0) return false;
h = in.substring (0, cl).toInt();

m = in.substring(cl+l, c2).toInt();
s = in.substring(c2+1) .toInt () ;

1= BeLLAMARE
>
Page 28 of 36

if (isTimeOfDay && (h < O || h > 23)) return false;
if (!isTimeOfDay && h < 0) return false;

if mMm < 0 || m>59 || s <0 || s >59) return false;
return true;

bool parseDateTime (const String& in, DateTime& dt) {
if (in.length() < 19) return false;

int year = in.substring(0,4).toInt();
int month = in.substring(5,7) .toInt();
int day = in.substring(S 10) .toInt () ;
int hour = in.substring(11,13).toInt();
int min = in.substring(14,16) .toInt () ;
int sec = in.substring(17,19) .toInt () ;
if (year < 2020 || month < 1 || month > 12 || day < 1 || day > 31) return false;
if (hour < 0 || hour > 23 || min < 0 || min > 59 || sec < 0 || sec > 59) return
false;
dt = DateTime (year, month, day, hour, min, sec);
return true;
}
String two (int v) { return (v < 10) ? (String("0") + v) : String(v); }

bool validateSettings (const Settings& x) {

if (x.startH < 0 || x.startH > 23 || x.startM < 0 || x.startM > 59 || x.startS < 0
|| x.startS > 59) return false;

if (x.onH < 0 || x.onM < 0 || x.onS <0 || x.onM > 59 || x.onS > 59) return false;

if (x.intH < 0 || x.intM < 0 || x.intS < 0 || x.intM > 59 || x.intS > 59) return
false;

unsigned long onSec = (unsigned long)x.onH * 3600UL + (unsigned long)x.onM *
60UL + (unsigned long) x.onS;

unsigned long intSec = (unsigned long)x.intH * 3600UL + (unsigned long)x.intM *

60UL + (unsigned long)x.intS;
if (onSec == || intSec == 0) return false;

return true;

J) =============——————x Flagh =—======—=—=—=-u--u-——
bool fsBeginOnce () {
if (fsOK) return true;
fsOK = InternalFS.begin() ;
if (!fsOK) Serial.println ("WARNING: InternalFS.begin() failed.");
return fsOK;

bool loadSettings () {

if (!fsBeginOnce()) return false;
File £ = InternalFS.open(CFG FILE, FILE O READ);
if (!f) return false;
String s = "";
1= BeLLAMARE
-

Page 29 of 36

while (f.available()) s += (char)f.read();
f.close();

s.trim() ;

if (s.length() == 0) return false;

int pl = s.indexOf ('\n"');
int p2 = s.indexOf ('\n', pl+l);
if (pl < 0 || p2 < 0) return false;

String 11 s.substring (0, pl);
String 12 = s.substring(pl+l, p2);
String 13 = s.substring(p2+1) ;

auto parseline = [&] (const String& line, const char* key, int &h, int &m, int
&sec, bool isTimeOfDay) -> bool ({
String k = String(key) + "=";
if (!line.startsWith(k)) return false;
String t = line.substring(k.length());
return parseHMS(t, h, m, sec, isTimeOfDay) ;

Iy

Settings tmp = cfg;

if (!parseline(l1l, "start", tmp.startH, tmp.startM, tmp.startS, true)) return
false;

if (!parseline(l2, "on", tmp.onH, tmp.onM, tmp.onS, false)) return
false;

if (!parseline (13, "interval", tmp.intH, tmp.intM, tmp.1intSs, false)) return
false;

if (!validateSettings (tmp)) return false;

cfg = tmp;
return true;

bool saveSettings () {
if (!'fsBeginOnce()) return false;
if (!validateSettings(cfg)) return false;

InternalFS.remove (CFG _FILE) ;
File f = InternalFS.open(CFG FILE, FILE O WRITE);
if (!f) return false;

String out = "start=" + two(cfg.startH) + ":" + two(cfg.startM) + ":" +
two (cfg.startS) + "\n";

out += "on=" + two(cfg.onH) + ":" + two(cfg.onM) + ":" + two(cfg.onS) +
"\n";

out += "interval=" + two(cfg.intH) + ":" + two(cfg.intM) + ":" +
two (cfg.intS) + "\n";

f.write(out.c str(), out.length()):

f.close();
return true;

1= BeLLAMARE
>
Page 30 of 36

[===m=m=mmmmm——————————e R0 GNP =======—————————————u
void maybeSetRTC () {
String ans = getYesNo ("Would you like to change RTC? (yes/no)");
if (ans.equalsIgnoreCase ("no")) return;

Serial.println("Enter current date and time [YYYY-MM-DD HH:MM:SS]:");
while (true) {
String s = readLineBlocking() ;

DateTime dt;
if (parseDateTime (s, dt)) {
rtc.adjust (dt) ;

Serial.print ("RTC set to: ");
Serial.println(dt.timestamp()) ;
return;
}
Serial.println("Invalid format. Try again [YYYY-MM-DD HH:MM:SS]:");
}
}
J) ==—————————————————— CONFICURATION =====—=—=—=—=——————-----

void printConfiguration() {

DateTime now = rtc.now () ;

DateTime firstCycle (now.year (), now.month(), now.day(), cfg.startH, cfg.startl,
cfg.starts) ;

if (firstCycle <= now) firstCycle = firstCycle + TimeSpan(1,0,0,0);

TimeSpan delta = firstCycle - now;

Serial.println ("=== SYNCRO SYSTEM CONFIGURATION ===");

Serial.print ("RTC Time: "); Serial.println (now.timestamp()) ;

Serial.print ("Start Time: "); Serial.print (cfg.startH); Serial.print(":");
Serial.print (cfg.startM); Serial.print(":"); Serial.println(cfg.startsS);

Serial.print ("On Duration: "); Serial.print(cfg.onH); Serial.print("h ");
Serial.print (cfg.onM); Serial.print("m "); Serial.print (cfg.onS);
Serial.println("s"):;

Serial.print ("Interval: "); Serial.print(cfg.intH); Serial.print("h ");
Serial.print (cfg.intM); Serial.print("m "); Serial.print (cfg.intS);
Serial.println("s");

Serial.print ("First cycle starts in: ");

Serial.print (delta.days () *24 + delta.hours()); Serial.print("h ");

Serial.print (delta.minutes()%60); Serial.print("m ");

Serial.print (delta.seconds()%60); Serial.println("s");

Serial println (Fessssssesssoooooaa s oo W o
}

[====m———————————————c GETTINGS PROMPTS ===—=—======——————c=—0-o

// NOTE: Prompts are printed on their own lines (Serial.println),
// so they do not appear "next to each other" in Serial Monitor.
void promptForSettings () {

Settings tmp = cfg;

Serial.println ("\nEnter new settings (format HH:MM:SS).");

while (true) {
Serial.println("Start Time [HH:MM:SS]:");

= BeLLAMARE
Page 31 of 36

String st = readLineBlocking() ;

int h, m, s;

if (parseHMS(st, h, m, s, true)) { tmp.startH = h; tmp.startM = m; tmp.startS =
s; break; }

Serial.println("Invalid format. Try again.");

while (true) {
Serial.println("On Duration [HH:MM:SS]:");
String on = readLineBlocking() ;
int h, m, s;
if (parseHMS(on, h, m, s, false)) { tmp.onH = h; tmp.onM = m; tmp.onS = s;
break; }
Serial.println("Invalid format. Try again.");

while (true) {
Serial.println("Interval [HH:MM:SS]:");
String iv = readLineBlocking() ;
int h, m, s;
if (parseHMS (iv, h, m, s, false)) { tmp.intH = h; tmp.intM = m; tmp.intS = s;
break; }
Serial.println("Invalid format. Try again.");

if (!validateSettings (tmp)) { Serial.println("ERROR: Invalid settings."); return;

cfg = tmp;
Serial.println ("\nNew settings captured.");

/) ===========——==—————o CONFIRMATION ============—=c———o—o
// Simplified flow (as requested) :
// 1) Ask: "Use these settings?"

// - no -> edit settings -> show summary -> repeat
// - yes —> ask save-to-flash -> then return (mission arms after this)
void waitForConfirmation () {
while (true) {
String response = getYesNo ("Use these settings? (yes/no)");
if (response.equalsIgnoreCase ("yes")) {

blinkColor (ledGreen, 250) ;
blinkColor (ledGreen, 250) ;

response = getYesNo ("Save these settings to flash for next boot? (yes/no)");
if (response.equalsIgnoreCase("yes")) {
if (saveSettings()) Serial.println("Saved to flash.");
else Serial.println("FAILED to save settings.");
} else {
Serial.println ("Not saving (revert to defaults or previous saved settings
next boot).");
}

return; // done: mission arms next

= BeLLAMARE
Page 32 of 36

// "no" means: edit settings

Serial.println ("Entering configuration mode...");
blinkColor (ledRed, 250);

promptForSettings () ;

printConfiguration () ;

[====m=mm————————e———c ALARME ===—===—=—————————ooou
void scheduleNextAlarm() {
DateTime now = rtc.now (), nextEvent;

if (isFirstCycle) {
nextEvent = DateTime (now.year (), now.month(), now.day(), cfg.startH, cfg.start)V,
cfg.starts) ;
if (nextEvent <= now) nextEvent = nextEvent + TimeSpan(1,0,0,0);
} else {
nextEvent = now + TimeSpan (0, cfg.intH, cfg.intM, cfg.intS);

rtc.setAlarml (nextEvent, DS3231 Al Date);
rtc.clearAlarm(1l) ;
Serial.print ("Next RTC alarm: "); Serial.println(nextEvent.timestamp()) ;

// ===================== SETUP / LOOP =====================
void setup () {

pinMode (MOSFET PIN, OUTPUT) ;

pinMode (ledGreen, OUTPUT) ;

pinMode (ledRed, OUTPUT) ;

pinMode (rtcAlarmPin, INPUT PULLUP) ;

Serial.begin (115200) ;
delay (1500) ;

blinkColor (ledGreen, 250); blinkColor (ledRed, 250);
blinkColor (ledGreen, 250); blinkColor (ledRed, 250);

setPower (false) ;
Wire.begin () ;

if (!rtc.begin()) {
Serial.println ("RTC not found!");
for (int i = 0; 1 < 5; i++) { blinkColor (ledRed, 200); delay(100); }

rtc.clearAlarm (1) ;
rtc.disableAlarm (1) ;
rtc.writeSqwPinMode (DS3231 OFF) ;

maybeSetRTC(); // handles prompt internally

1= BeLLAMARE
>
Page 33 of 36

if (loadSettings()) Serial.println("Loaded settings from flash.");
else Serial.println("No saved settings; using defaults.");

printConfiguration() ;
waitForConfirmation(); // simplified behavior

scheduleNextAlarm() ;
attachInterrupt (digitalPinToInterrupt (rtcAlarmPin), onRTCAlarm, FALLING)

initialized = true;

waitingForFirstCycle = true;
isFirstCycle = true;
Serial.println("Mission armed.");

void loop () {
if (!initialized) return;

if (rtcAlarmTriggered) {
rtcAlarmTriggered = false;
rtc.clearAlarm (1) ;

DateTime now = rtc.now() ;

DateTime expectedStart (now.year (), now.month (), now.day(), cfg.startH,
cfg.startM, cfg.startsS);

if (isFirstCycle && now < expectedStart) {

Serial.println ("RTC alarm early, ignored.");
return;

}

isFirstCycle = false;

waitingForFirstCycle = false;

setPower (true) ;
Serial.print ("Power ON at: "); Serial.println (now.timestamp());
blinkColor (ledGreen, 250);

unsigned long onMs =
(unsigned long)cfg.onH * 3600UL * 1000UL +
(unsigned long)cfg.onM * 60UL * 1000UL +
(unsigned long)cfg.onS * 1000UL;

delay (onMs) ;

setPower (false) ;
Serial.println ("Power OFF.");
blinkColor (ledRed, 250) ;
delay (100) ;

scheduleNextAlarm() ;

’

=% BELLAMARE
-

Page 34 of 36

if (waitingForFirstCycle && millis() - lastPreStartBlink >= 5000) ({
blinkColor (ledGreen, 200) ;
lastPreStartBlink = millis();

if (DEPLOYMENT MODE) _ WFI();
else delay(10);

« BeLLAMARE
Page 35 of 36

9. Notes

1= BeLLAMARE

Page 36 of 36

