
​SYNCHRO Timer​

​U S E R M A N U A L​

​Manual Reference: UM_SYNCHRO-Timer_0226_revA1​

​Bellamare, LLC​
​www.bellamare-us.com​

​San Diego, California - USA​

​info@bellamare-us.com​
​Tel: +1 (858) 578-8108​

​Page​​1​​of 36​

​Table of Content​

​1. Introduction​ ​4​
​1.1 Purpose of SYNCHRO Timer​ ​4​
​1.2 How SYNCHRO Timer Works (Concept)​ ​4​
​1.3 System Overview​ ​5​
​1.4 Intended Use​ ​5​

​2. Technical Specifications​ ​6​
​2.1 Mechanical​ ​6​
​2.2 Electrical​ ​7​
​2.3 Power Autonomy​ ​7​
​2.4 Interfaces​ ​7​
​2.5 Software Interface​ ​8​

​3. Hardware Description​ ​9​
​3.1 Mechanical Construction​ ​9​

​3.1.1 End-Cap & Access​ ​9​
​3.2 Electrical Architecture​ ​10​

​3.2.1 Power Switching​ ​10​
​3.2.2 Timing and Control​ ​10​
​3.2.3 Status Indication​ ​11​

​3.3 Battery System​ ​12​
​3.3.1 AAA Battery Pack (Control Power)​ ​12​
​3.3.2 Coin-Cell Battery (RTC Backup)​ ​13​

​4. Installation & Configuration​ ​14​
​4.1 Opening the Unit​ ​14​
​4.2 Connecting to the Microcontroller​ ​14​
​4.3 Arduino IDE Setup (Optional – Firmware Modification Only)​ ​15​

​4.3.1 Install Arduino IDE​ ​15​
​4.3.2 Install Seeed nRF52840 Board Package​ ​15​
​4.3.3 Required Libraries​ ​16​
​4.4 Selecting Board and Port​ ​17​
​4.5 Serial Configuration Procedure​ ​18​
​4.6 Setting the RTC (Optional)​ ​18​
​4.7 Configuring Mission Timing​ ​19​
​4.8 Saving to Flash Memory​ ​20​
​4.9 LED Behavior During Operation​ ​20​

​5. Deployment Procedure​ ​21​
​5.1 Settings Verification​ ​21​
​5.2 O-Ring Inspection and Preparation​ ​21​
​5.3 Closing the Enclosure​ ​21​

​Page​​2​​of 36​

​5.4 Connecting External Power and Instrument​ ​21​
​5.5 Functional Test Prior to Deployment​ ​22​

​6. Maintenance & Corrosion Prevention​ ​23​
​6.1 Routine Surface Protection​ ​23​
​6.2 Post-Recovery Procedure​ ​23​
​6.3 Inspection and Corrosion Treatment​ ​23​
​6.4 O-Ring Replacement​ ​23​

​7. Included Items & Accessories​ ​24​
​7.1 Included Items​ ​24​
​7.2 Optional Accessories​ ​24​
​7.3 Support Services​ ​24​

​8. Legal Notices and Warranty​ ​25​
​8.1 General Disclaimer​ ​25​
​8.2 Safety Warnings​ ​25​
​8.3 Electrical Responsibility​ ​25​
​8.4 Warranty​ ​25​
​8.5 Intellectual Property​ ​26​
​8.6 Data Responsibility​ ​26​

​9. My Notes​ ​36​

​Page​​3​​of 36​

​1. Introduction​

​1.1 Purpose of SYNCHRO Timer​

​The SYNCHRO Timer is a low-power autonomous scheduling module designed to eliminate wasted​
​energy during oceanographic and subsea deployments.​

​Many instruments consume power continuously, even when data acquisition is not required. SYNCHRO​
​Timer addresses this inefficiency by physically disconnecting the main power path outside of predefined​
​operating windows. By powering instruments only when they are needed, SYNCHRO Timer significantly​
​extends deployment duration without increasing battery size or system complexity.​

​Simple, reliable, and autonomous, SYNCHRO Timer enables longer missions while preserving valuable​
​onboard energy resources.​

​1.2 How SYNCHRO Timer Works (Concept)​

​SYNCHRO Timer operates as an intelligent inline power switch placed between an external battery pack​
​and a subsea instrument.​

​Internally, the system combines:​
​●​ ​A low-power microcontroller (Seeed Studio XIAO nRF52840)​
​●​ ​A precision Real-Time Clock (DS3231)​
​●​ ​A MOSFET-based power switching stage​

​The Real-Time Clock maintains accurate timekeeping. The microcontroller uses this time reference to​
​determine when power should be enabled or disabled. At scheduled intervals, the microcontroller​
​activates the MOSFET, closing the main power path and allowing current to flow to the connected​
​instrument. When the programmed on-duration expires, the MOSFET opens the circuit, completely​
​isolating the instrument from the battery supply.​

​This architecture ensures:​
​●​ ​Precise timing control​
​●​ ​Extremely low standby consumption​
​●​ ​Reliable operation over long deployments​

​SYNCHRO Timer’s internal AAA batteries power only the control electronics and switching circuitry. The​
​connected instrument is powered exclusively by the external battery pack.​

​Page​​4​​of 36​

​1.3 System Overview​

​SYNCHRO Timer consists of a pressure-rated cylindrical housing with integrated power connectors and​
​an internal electronics assembly mounted to the removable end-cap.​

​Key external features include:​
​●​ ​Power input connector (MCBH2M)​
​●​ ​Power output connector (MCBH2F)​
​●​ ​Acrylic sight glass for LED status indication​
​●​ ​Removable threaded end-cap with dual O-ring seals​

​Fig. 1: Overall Product View​

​The enclosure is available in:​
​●​ ​Hard-anodized 6061-T6 aluminum for deep-water applications​
​●​ ​Acetal for shallower deployments​

​The system is configured via a USB-C connection to the internal microcontroller using the Arduino IDE.​
​Once configured and armed, SYNCHRO Timer operates fully autonomously without external​
​communication.​

​1.4 Intended Use​

​SYNCHRO Timer is designed for:​
​●​ ​Oceanographic instrument scheduling​
​●​ ​Intermittent sensor activation​
​●​ ​Battery-powered subsea systems​
​●​ ​Long-duration autonomous deployments​

​The device is intended to be installed inline between a battery pack and a compatible DC-powered​
​instrument within its specified voltage and depth ratings.​

​Page​​5​​of 36​

​2. Technical Specifications​

​2.1 Mechanical​

​Housing Options:​

​Deep-Water Version​
​●​ ​Material: Hard-anodized 6061-T6 aluminum​
​●​ ​Maximum Depth Rating: 4,500 meters​
​●​ ​Weight: 2.5 lb (in air), 1.25 lb (in water)​

​Shallow-Water Version​
​●​ ​Material: Acetal​
​●​ ​Maximum Depth Rating: 500 meters​
​●​ ​Weight: 1.5 lb (in air), 0.25 lb (in water)​

​Dimensions​
​●​ ​Length: 7.5 in​
​●​ ​Outer Diameter: 2.5 in​

​Sealing​
​●​ ​Dual O-ring design​
​●​ ​O-rings: 2 × #134 Buna-N (end-cap bore)​

​Fig. 2: SYNCHRO Timer Mechanical Dimensions​

​Page​​6​​of 36​

​2.2 Electrical​

​Input Voltage Range​
​●​ ​6-28 VDC​
​●​ ​Maximum current: 10 A​

​Control Power Source​
​●​ ​3 × AAA batteries (internal)​

​RTC Backup​
​●​ ​1 × CR1220 coin-cell battery​

​Power Switching​
​●​ ​MOSFET-based solid-state switching​
​●​ ​Full disconnection of output power when OFF​

​Control Electronics​
​●​ ​Microcontroller: Seeed Studio XIAO nRF52840​
​●​ ​Real-Time Clock: DS3231​

​2.3 Power Autonomy​

​Autonomy values below reflect conservative estimates for cold-water deployment conditions (0–5 °C).​

​Duty Cycle​ ​Cold Alkaline AAA​ ​Cold Lithium AAA​

​2 hours per day​ ​~3–4 weeks​ ​~6–7 weeks​

​1 hour per day​ ​~5–6 weeks​ ​~10 weeks​

​10 min per hour​ ​~2 weeks​ ​~3–4 weeks​

​Recommended battery types:​
​●​ ​Alkaline: Duracell Coppertop or Energizer Max​
​●​ ​Lithium: Energizer Ultimate Lithium AAA​

​2.4 Interfaces​

​Power Input​
​●​ ​MCBH2M (2-pin male)​

​Power Output​
​●​ ​MCBH2F (2-pin female)​

​Configuration Interface​
​●​ ​Internal USB-C serial port​

​Status Indication​
​●​ ​Green and Red LEDs (visible through acrylic sight glass)​

​Page​​7​​of 36​

​2.5 Software Interface​

​●​ ​Configuration via Arduino IDE​
​●​ ​Serial-based interactive mission setup​
​●​ ​Internal flash storage for mission parameters​

​Page​​8​​of 36​

​3. Hardware Description​

​3.1 Mechanical Construction​

​SYNCHRO Timer consists of a cylindrical pressure-rated housing with a removable threaded end-cap.​
​The internal electronics assembly is mounted directly to the dry side of the end-cap.​

​The enclosure is available in two configurations:​
​●​ ​Hard-anodized 6061-T6 aluminum for deep-water applications​
​●​ ​Acetal for shallow-water deployments​

​The sealing system uses dual #134 Buna-N O-rings installed in the end-cap bores. Proper cleaning and​
​lubrication of these O-rings are essential to maintain pressure integrity.​

​Fig. 3: End-Cap Assembly with Electronics and O-rings​

​3.1.1 End-Cap & Access​
​The end-cap integrates:​

​●​ ​Power input connector (MCBH2M)​
​●​ ​Power output connector (MCBH2F)​
​●​ ​Internal electronics board​

​To access the electronics, unthread the end-cap by turning it counter-clockwise. Grip tabs are​
​integrated into the cap to assist removal. A wrench flat at the base of the cylinder accommodates​
​a ¾” wrench if a strong grip of the housing is required during opening.​

​For deployment, the end-cap must be tightened by hand only. Ensure the cap is fully seated and​
​flush with the housing before use.​

​Page​​9​​of 36​

​Fig. 4: End-Cap Grip Tabs and Wrench Interface​

​3.2 Electrical Architecture​

​SYNCHRO Timer is built around a low-power control architecture designed to minimize standby​
​consumption while providing precise timing control.​

​The main components include:​
​●​ ​Seeed Studio XIAO nRF52840 microcontroller​
​●​ ​DS3231 Real-Time Clock (RTC)​
​●​ ​MOSFET-based power switching stage​
​●​ ​Dual status LEDs​

​3.2.1 Power Switching​

​The MOSFET functions as a solid-state switch placed inline between the external battery pack​
​and the connected instrument.​

​●​ ​When activated, the MOSFET closes the main power path, allowing current to flow to the​
​instrument.​

​●​ ​When deactivated, it opens the circuit, fully isolating the instrument from the battery​
​supply. This physical disconnection prevents idle drain and extends mission duration.​

​3.2.2 Timing and Control​

​The DS3231 Real-Time Clock maintains continuous timekeeping. The microcontroller uses this​
​time reference to:​

​●​ ​Determine scheduled activation times​
​●​ ​Enable the MOSFET for the programmed duration​
​●​ ​Disable power at the end of each cycle​

​The RTC can generate hardware alarms that wake the microcontroller from low-power sleep,​
​ensuring precise scheduling with minimal standby current.​

​Page​​10​​of 36​

​3.2.3 Status Indication​

​Two internal LEDs provide system feedback:​
​●​ ​Green LED: Power-on and active states​
​●​ ​Red LED: Power-off and configuration events​

​The LEDs are visible through an acrylic sight glass. During deployment, LED activity is brief and​
​minimized to conserve power.​

​Fig. 5: LED Sight Glass​

​Page​​11​​of 36​

​3.3 Battery System​

​SYNCHRO Timer uses two independent battery systems, each serving a different function.​
​ ​

​Fig. 6: Internal Battery Configuration​

​3.3.1 AAA Battery Pack (Control Power)​
​Three AAA batteries provide primary operating power for:​

​●​ ​Microcontroller​
​●​ ​RTC (when main power is present)​
​●​ ​MOSFET gate drive circuitry​
​●​ ​LED indicators​

​These batteries do not power the connected instrument. The instrument is powered exclusively​
​by the external battery pack connected to the input/output connectors.​

​To fully stop SYNCHRO Timer’s operation, all three AAA batteries must be removed.​
​ ​

​Page​​12​​of 36​

​3.3.2 Coin-Cell Battery (RTC Backup)​

​A CR1220 coin-cell battery powers the RTC backup supply only.​

​During normal operation, the RTC is powered from the main AAA supply.​
​If the AAA batteries are removed or depleted, the RTC automatically switches to the coin-cell​
​backup source to preserve date and time.​

​The coin-cell does not power the microcontroller or any other subsystem.​

​Although capable of multi-year operation, the coin-cell should be replaced annually or prior to any​
​critical deployment to ensure reliable time retention.​

​Page​​13​​of 36​

​4. Installation & Configuration​

​4.1 Opening the Unit​

​●​ ​Ensure the system is powered OFF.​
​●​ ​Unscrew the end-cap by turning it counter-clockwise.​
​●​ ​Carefully remove the end-cap to expose the internal electronics assembly.​

​Grip tabs are integrated into the end-cap to assist removal. A ¾” wrench may be used to stabilize the​
​housing if required.​

​4.2 Connecting to the Microcontroller​

​●​ ​Connect a USB-C cable to the Seeed Studio XIAO nRF52840 inside the enclosure.​
​●​ ​Connect the other end to your computer.​
​●​ ​The microcontroller will power from the USB connection.​

​Note (Setup Only):​
​During configuration, the microcontroller may be powered directly from USB. The internal AAA batteries​
​are not required for setup and may be removed to simplify restart and reprogramming.​

​Fig. 7: USB-C Connection to XIAO nRF52840​

​Page​​14​​of 36​

​4.3 Arduino IDE Setup (Optional – Firmware Modification Only)​

​The SYNCHRO Timer is delivered with preloaded firmware and does not require the Arduino IDE for​
​normal operation.​
​The following steps are required only if you intend to modify, recompile, or upload firmware.​

​4.3.1 Install Arduino IDE​
​●​ ​Download and install the Arduino IDE from:​

​https://www.arduino.cc/en/software/​

​4.3.2 Install Seeed nRF52840 Board Package​
​●​ ​Open Arduino IDE.​
​●​ ​Go to File → Preferences​
​●​ ​In “Additional Boards Manager URLs” paste:​

​https://files.seeedstudio.com/arduino/package_seeeduino_boards_index.json​
​●​ ​Click OK.​
​●​ ​Go to Tools → Board → Boards Manager​
​●​ ​Search for: Seeed nRF52​
​●​ ​Install: Seeed XIAO nRF52840​

​Page​​15​​of 36​

https://www.arduino.cc/en/software/

​Fig. 8: Installing Board Package​

​4.3.3 Required Libraries​
​If compiling firmware, install:​

​●​ ​Seeed Studio nRF52 board package​
​●​ ​Adafruit RTClib​
​●​ ​Adafruit LittleFS / InternalFileSystem​

​Failure to install these dependencies will result in compilation errors.​

​Page​​16​​of 36​

​4.4 Selecting Board and Port​
​●​ ​Go to Tools → Board​

​Select: Seeed XIAO nRF52840​

​●​ ​Go to Tools → Port​
​Select the connected COM port (Windows) or USB device (Mac/Linux).​

​Fig. 9: Selecting Board and Port​

​Page​​17​​of 36​

​4.5 Serial Configuration Procedure​

​●​ ​Open Tools → Serial Monitor​
​●​ ​Set baud rate to 115200​
​●​ ​If no message appears, press the reset button on the microcontroller.​

​Pressing reset is safe and restarts the firmware.​

​Fig. 10: Serial Monitor and Reset Button​

​4.6 Setting the RTC (Optional)​

​At startup, the system prompts:​

​Power OFF (pin driven LOW)​

​Would you like to change RTC? (yes/no)​

​●​ ​Enter no to keep the current RTC time.​
​●​ ​Enter yes to manually set date and time.​

​If “yes” is selected:​
​Enter time in the format: YYYY-MM-DD HH:MM:SS​

​Page​​18​​of 36​

​4.7 Configuring Mission Timing​

​After RTC confirmation, the system displays current settings:​

​●​ ​Start Time​
​●​ ​On Duration​
​●​ ​Interval​
​●​ ​Time until first cycle​

​You will be prompted:​​Use these settings? (yes/no)​

​Loaded settings from flash.​

​=== SYNCRO SYSTEM CONFIGURATION ===​

​RTC Time: 2026-02-11T13:07:13​

​Start Time: 13:10:0​

​On Duration: 1h 0m 0s​

​Interval: 5h 0m 0s​

​First cycle starts in: 0h 2m 47s​

​------------------------------------​

​Use these settings? (yes/no)​

​If you enter no, you will enter configuration mode.​
​You will be prompted to enter:​

​●​ ​Start Time [HH:MM:SS]​
​●​ ​On Duration [HH:MM:SS]​
​●​ ​Interval [HH:MM:SS]​

​After entry, the system summarizes the new configuration and again prompts:​
​Use these settings? (yes/no)​

​Page​​19​​of 36​

​4.8 Saving to Flash Memory​
​After accepting settings, you will be asked:​

​Save these settings to flash for next boot? (yes/no)​

​●​ ​Selecting yes stores parameters in non-volatile memory.​
​●​ ​Selecting no applies settings for the current session only.​

​Once confirmed, the system arms the mission and displays:​

​Saved to flash.​

​Next RTC alarm: 2026-02-11T13:25:00​

​Mission armed.​

​4.9 LED Behavior During Operation​

​SYNCHRO Timer uses two internal LEDs for feedback:​
​During configuration:​

​●​ ​Green LED blinks to confirm accepted inputs.​
​●​ ​Red LED blinks during configuration changes.​

​When armed and awaiting start:​
​●​ ​Green LED blinks once every 5 seconds.​

​During operation:​
​●​ ​Green LED blinks briefly when power turns ON.​
​●​ ​Red LED blinks briefly when power turns OFF.​

​LED activity is intentionally brief to minimize power consumption during deployment.​

​Page​​20​​of 36​

​5. Deployment Procedure​

​5.1 Settings Verification​

​Before closing SYNCHRO Timer, verify the following:​

​●​ ​Mission timing parameters have been correctly configured.​
​●​ ​The RTC clock displays the correct date and time.​
​●​ ​AAA batteries are installed and fresh.​
​●​ ​The CR1220 coin-cell battery is installed.​

​5.2 O-Ring Inspection and Preparation​

​Proper O-ring preparation is critical to maintaining pressure integrity.​

​●​ ​Remove the O-rings from the end-cap grooves.​
​●​ ​Inspect for cuts, deformation, or contamination.​
​●​ ​Clean the O-rings.​
​●​ ​Apply a light, even coat of appropriate O-ring grease.​
​●​ ​Ensure the O-ring grooves are clean and free of debris.​
​●​ ​Inspect the interior bore of the cylinder for dirt, hair, or foreign particles.​
​●​ ​Apply a very thin film of O-ring grease to the cylinder sealing surface.​

​Do not over-grease. Excess lubricant may attract debris.​

​5.3 Closing the Enclosure​

​●​ ​Carefully insert the end-cap into the cylinder.​
​●​ ​Thread the end-cap clockwise.​
​●​ ​Tighten by hand only.​
​●​ ​Ensure the end-cap is fully seated and flush against the cylinder.​
​●​ ​Confirm there is no visible gap between cap and housing.​

​A wrench is not required for final tightening.​

​5.4 Connecting External Power and Instrument​

​●​ ​Mount SYNCHRO Timer securely to the instrumented payload.​
​●​ ​Connect the external battery pack to the Power Input (MCBH2M) connector.​
​●​ ​Connect the instrument to the Power Output (MCBH2F) connector.​
​●​ ​Ensure cables are routed to avoid mechanical stress.​

​Page​​21​​of 36​

​5.5 Functional Test Prior to Deployment​

​Before field deployment:​

​●​ ​Connect the external battery pack.​
​●​ ​Observe LED behavior.​
​●​ ​Confirm scheduled activation and deactivation occur at the programmed times.​
​●​ ​Verify the instrument powers ON and OFF as expected.​

​A full functional test under realistic conditions is strongly recommended before subsea​
​deployment.​

​Page​​22​​of 36​

​6. Maintenance & Corrosion Prevention​

​6.1 Routine Surface Protection​

​For long-term or repeated deployments:​

​●​ ​Apply a light protective coating of​​LPS-3​​to all exposed​​metallic surfaces.​
​●​ ​Wipe off excess product after application.​
​●​ ​Avoid applying lubricant to O-rings or sealing faces unless specifically intended for that purpose.​

​Protective coating reduces oxidation and galvanic corrosion in saltwater environments.​

​6.2 Post-Recovery Procedure​

​After each recovery from seawater:​

​●​ ​Rinse the entire enclosure thoroughly with fresh water to remove salt deposits.​
​●​ ​Clean with fresh water and mild dish soap if necessary.​
​●​ ​Allow the unit to dry completely.​
​●​ ​Reapply a light protective coating of LPS-3 before storage.​

​Salt deposits left on aluminum surfaces accelerate corrosion and pitting.​

​6.3 Inspection and Corrosion Treatment​

​If corrosion or pitting is observed:​

​●​ ​Remove surface oxidation using a soft wire brush.​
​●​ ​Clean the affected area.​
​●​ ​Temporarily seal the area with heavy grease if immediate repair is not possible.​
​●​ ​For long-term protection, apply epoxy coating.​

​J-B Weld is recommended for ease of use and adhesion.​

​6.4 O-Ring Replacement​

​Replace O-rings if any of the following are observed:​

​●​ ​Cuts, cracking or abrasions​
​●​ ​Permanent deformation​
​●​ ​Flattening​

​Only use specified replacement O-rings (#134 Buna-N).​

​Page​​23​​of 36​

​7. Included Items & Accessories​

​7.1 Included Items​

​Each SYNCHRO Timer is delivered in a protective case and includes the following components:​

​Hardware:​ ​●​ ​3 × AAA batteries (control power)​
​●​ ​1 × CR1220 coin-cell battery (RTC backup)​
​●​ ​1 × USB-C cable (3 ft),​
​●​ ​2 x #134 Buna-N replacement O-rings​

​Dummy Plugs*​ ​●​ ​1 x Input POWER connector plug​
​●​ ​1 x Output POWER connector plug​

​*​​Dummy plugs must be installed whenever connectors​​are not in use to prevent corrosion​

​7.2 Optional Accessories​

​Optional accessories may be available depending on deployment requirements, including:​

​●​ ​Replacement microcontroller and/or RTC​
​●​ ​Custom cable assemblies​

​7.3 Support Services​

​Bellamare provides technical support and service options, including:​
​●​ ​Firmware updates​
​●​ ​Field Support​
​●​ ​Replacement parts​
​●​ ​Deployment consultation​

​For assistance, contact:​

​Bellamare, LLC​
​San Diego, California – USA​

​www.bellamare-us.com​
​info@bellamare-us.com​
​Tel: +1 (858) 578-8108​

​Page​​24​​of 36​

​8. Legal Notices and Warranty​

​8.1 General Disclaimer​

​This manual is provided “as is” without warranty of any kind, either express or implied, including but not​
​limited to the implied warranties of merchantability or fitness for a particular purpose.​

​Bellamare reserves the right to modify the product, firmware, specifications, or documentation without​
​prior notice.​

​8.2 Safety Warnings​

​Failure to follow proper operating procedures may result in equipment damage, data loss, or personal​
​injury.​

​●​ ​Do not operate SYNCHRO Timer outside of its specified depth rating.​
​●​ ​Always remove power before opening the enclosure.​
​●​ ​Use only specified connectors, cables, and voltage ranges.​
​●​ ​Ensure O-rings are clean and properly lubricated prior to deployment.​
​●​ ​Only trained personnel should perform internal modifications or repairs.​

​8.3 Electrical Responsibility​

​Improper handling of power connections may result in damage to the device or connected instruments.​

​Bellamare assumes no responsibility for damage resulting from:​

​●​ ​Incorrect wiring​
​●​ ​Use outside specified voltage limits​
​●​ ​Reverse polarity​
​●​ ​Unauthorized modification​

​Users are responsible for verifying compatibility with external battery systems and instruments.​

​8.4 Warranty​

​SYNCHRO Timer is covered by a limited one-year warranty against defects in materials and​
​workmanship under normal use.​

​This warranty does not cover:​

​●​ ​Damage caused by misuse or improper installation​
​●​ ​Unauthorized modifications​
​●​ ​Corrosion resulting from inadequate maintenance​
​●​ ​Normal wear associated with marine environments​

​For warranty service or technical support, contact Bellamare.​

​Page​​25​​of 36​

​8.5 Intellectual Property​

​The SYNCHRO Timer hardware and firmware are proprietary systems developed by Bellamare, LLC.​

​Unauthorized duplication, reverse engineering, or distribution of firmware or hardware designs is​
​prohibited.​

​8.6 Data Responsibility​

​Bellamare is not liable for loss of data, missed acquisition events, or mission failures resulting from the​
​use or misuse of this product.​

​Users are solely responsible for verifying correct configuration and performing functional tests prior to​
​deployment.​

​Page​​26​​of 36​

​Appendix 1: Arduino IDE SYNCHRO Timer Sketch​

​// === SYNCHRO Timer (XIAO nRF52840 / Seeed nRF52) ===​
​// Reliable polarity-safe power switching + interactive configuration + optional​
​flash save​

​#include​​<Wire.h>​
​#include​​"RTClib.h"​
​#include​​<Adafruit_LittleFS.h>​
​#include​​<InternalFileSystem.h>​
​using​​namespace​​Adafruit_LittleFS_Namespace​​;​

​// ----------------- PINS -----------------​
​const​​int​​MOSFET_PIN​ ​=​​0​​;​
​const​​int​​ledGreen​ ​=​​9​​;​
​const​​int​​ledRed​ ​=​​10​​;​
​const​​int​​rtcAlarmPin​​=​​3​​;​

​// ----------------- FLAGS -----------------​
​const​​bool​​ACTIVE_LOW​ ​=​​false​​;​
​const​​bool​​DEPLOYMENT_MODE​​=​​true​​;​

​// ----------------- RTC -----------------​
​RTC_DS3231​​rtc;​

​// ----------------- SETTINGS -----------------​
​struct​​Settings​​{​
​int​​startH​​=​​12​​,​​startM​​=​​45​​,​​startS​​=​​0​​;​
​int​​onH​ ​=​​0​​,​ ​onM​ ​=​​6​​,​ ​onS​ ​=​​0​​;​
​int​​intH​ ​=​​0​​,​ ​intM​ ​=​​2​​,​ ​intS​ ​=​​0​​;​

​};​
​Settings​​cfg;​

​const​​char​​*​​CFG_FILE​​=​​"/syncro_cfg.txt"​​;​
​bool​​fsOK​​=​​false​​;​

​// ----------------- STATE -----------------​
​volatile​​bool​​rtcAlarmTriggered​​=​​false​​;​
​bool​​initialized​​=​​false​​;​
​bool​​waitingForFirstCycle​​=​​true​​;​
​unsigned​​long​​lastPreStartBlink​​=​​0​​;​
​bool​​isFirstCycle​​=​​true​​;​

​// ===================== Power control =====================​
​void​​setPower​​(​​bool​​on)​​{​
​int​​level​​=​​on​​?​​HIGH​​:​​LOW;​
​if​​(ACTIVE_LOW)​​level​​=​​(level​​==​​HIGH)​​?​​LOW​​:​​HIGH;​
​digitalWrite(MOSFET_PIN,​​level);​

​Page​​27​​of 36​

​Serial.print(​​"Power "​​);​​Serial.print(on​​?​​"ON"​​:​​"OFF"​​);​
​Serial.print(​​" (pin driven "​​);​​Serial.print(level​​==​​HIGH​​?​​"HIGH"​​:​​"LOW"​​);​

​Serial.println(​​")"​​);​
​}​

​// ===================== LEDs =====================​
​void​​blinkColor​​(​​int​​pin,​​int​​duration_ms)​​{​
​digitalWrite(ledGreen,​​LOW);​
​digitalWrite(ledRed,​​LOW);​
​digitalWrite(pin,​​HIGH);​
​delay(duration_ms);​
​digitalWrite(pin,​​LOW);​

​}​

​// ===================== RTC interrupt =====================​
​void​​onRTCAlarm​​()​​{​
​rtcAlarmTriggered​​=​​true​​;​

​}​

​// ===================== Serial helpers =====================​
​String​​readLineBlocking​​()​​{​
​String​​s​​=​​""​​;​
​while​​(s.length()​​==​​0​​)​​{​

​while​​(!Serial.available())​​delay(​​10​​);​
​s​​=​​Serial.readStringUntil(​​'\n'​​);​
​s.trim();​

​}​
​while​​(Serial.available())​​Serial.read();​
​return​​s;​

​}​

​// ----------------- Reliable yes/no prompt -----------------​
​String​​getYesNo​​(​​const​​String​​&prompt)​​{​
​String​​response​​=​​""​​;​
​while​​(​​true​​)​​{​

​while​​(Serial.available())​​Serial.read();​
​Serial.println(prompt);​
​while​​(!Serial.available())​​delay(​​10​​);​
​response​​=​​Serial.readStringUntil(​​'\n'​​);​
​response.trim();​
​if​​(response.equalsIgnoreCase(​​"yes"​​)​​||​​response.equalsIgnoreCase(​​"no"​​))​
​return​​response;​

​Serial.println(​​"Please type 'yes' or 'no'."​​);​
​}​

​}​

​// ===================== Parsing =====================​
​bool​​parseHMS​​(​​const​​String&​​in,​​int​​&h,​​int​​&m,​​int​​&s,​​bool​​isTimeOfDay)​​{​
​int​​c1​​=​​in.indexOf(​​':'​​);​​int​​c2​​=​​in.indexOf(​​':'​​,​​c1+​​1​​);​
​if​​(c1​​<​​0​​||​​c2​​<​​0​​)​​return​​false​​;​
​h​​=​​in.substring(​​0​​,​​c1).toInt();​
​m​​=​​in.substring(c1+​​1​​,​​c2).toInt();​
​s​​=​​in.substring(c2+​​1​​).toInt();​

​Page​​28​​of 36​

​if​​(isTimeOfDay​​&&​​(h​​<​​0​​||​​h​​>​​23​​))​​return​​false​​;​
​if​​(!isTimeOfDay​​&&​​h​​<​​0​​)​​return​​false​​;​
​if​​(m​​<​​0​​||​​m​​>​​59​​||​​s​​<​​0​​||​​s​​>​​59​​)​​return​​false​​;​
​return​​true​​;​

​}​

​bool​​parseDateTime​​(​​const​​String&​​in,​​DateTime&​​dt)​​{​
​if​​(in.length()​​<​​19​​)​​return​​false​​;​
​int​​year​ ​=​​in.substring(​​0​​,​​4​​).toInt();​
​int​​month​​=​​in.substring(​​5​​,​​7​​).toInt();​
​int​​day​ ​=​​in.substring(​​8​​,​​10​​).toInt();​
​int​​hour​ ​=​​in.substring(​​11​​,​​13​​).toInt();​
​int​​min​ ​=​​in.substring(​​14​​,​​16​​).toInt();​
​int​​sec​ ​=​​in.substring(​​17​​,​​19​​).toInt();​
​if​​(year​​<​​2020​​||​​month​​<​​1​​||​​month​​>​​12​​||​​day​​<​​1​​||​​day​​>​​31​​)​​return​​false​​;​
​if​​(hour​​<​​0​​||​​hour​​>​​23​​||​​min​​<​​0​​||​​min​​>​​59​​||​​sec​​<​​0​​||​​sec​​>​​59​​)​​return​

​false​​;​
​dt​​=​​DateTime(year,​​month,​​day,​​hour,​​min,​​sec);​
​return​​true​​;​

​}​

​String​​two​​(​​int​​v){​​return​​(v​​<​​10​​)​​?​​(String(​​"0"​​)​​+​​v)​​:​​String(v);​​}​

​bool​​validateSettings​​(​​const​​Settings&​​x)​​{​
​if​​(x.startH​​<​​0​​||​​x.startH​​>​​23​​||​​x.startM​​<​​0​​||​​x.startM​​>​​59​​||​​x.startS​​<​​0​

​||​​x.startS​​>​​59​​)​​return​​false​​;​
​if​​(x.onH​​<​​0​​||​​x.onM​​<​​0​​||​​x.onS​​<​​0​​||​​x.onM​​>​​59​​||​​x.onS​​>​​59​​)​​return​​false​​;​
​if​​(x.intH​​<​​0​​||​​x.intM​​<​​0​​||​​x.intS​​<​​0​​||​​x.intM​​>​​59​​||​​x.intS​​>​​59​​)​​return​

​false​​;​

​unsigned​​long​​onSec​ ​=​​(​​unsigned​​long​​)x.onH​ ​*​​3600UL​​+​​(​​unsigned​​long​​)x.onM​ ​*​
​60UL​​+​​(​​unsigned​​long​​)x.onS;​
​unsigned​​long​​intSec​​=​​(​​unsigned​​long​​)x.intH​​*​​3600UL​​+​​(​​unsigned​​long​​)x.intM​​*​

​60UL​​+​​(​​unsigned​​long​​)x.intS;​
​if​​(onSec​​==​​0​​||​​intSec​​==​​0​​)​​return​​false​​;​

​return​​true​​;​
​}​

​// ===================== Flash =====================​
​bool​​fsBeginOnce​​()​​{​
​if​​(fsOK)​​return​​true​​;​
​fsOK​​=​​InternalFS.begin();​
​if​​(!fsOK)​​Serial.println(​​"WARNING: InternalFS.begin()​​failed."​​);​
​return​​fsOK;​

​}​

​bool​​loadSettings​​()​​{​
​if​​(!fsBeginOnce())​​return​​false​​;​
​File​​f​​=​​InternalFS.open(CFG_FILE,​​FILE_O_READ);​
​if​​(!f)​​return​​false​​;​

​String​​s​​=​​""​​;​

​Page​​29​​of 36​

​while​​(f.available())​​s​​+=​​(​​char​​)f.read();​
​f.close();​
​s.trim();​
​if​​(s.length()​​==​​0​​)​​return​​false​​;​

​int​​p1​​=​​s.indexOf(​​'\n'​​);​
​int​​p2​​=​​s.indexOf(​​'\n'​​,​​p1+​​1​​);​
​if​​(p1​​<​​0​​||​​p2​​<​​0​​)​​return​​false​​;​

​String​​l1​​=​​s.substring(​​0​​,​​p1);​
​String​​l2​​=​​s.substring(p1+​​1​​,​​p2);​
​String​​l3​​=​​s.substring(p2+​​1​​);​

​auto​​parseLine​​=​​[&](​​const​​String&​​line,​​const​​char​​*​​key,​​int​​&h,​​int​​&m,​​int​
​&sec,​​bool​​isTimeOfDay)​​->​​bool​​{​

​String​​k​​=​​String(key)​​+​​"="​​;​
​if​​(!line.startsWith(k))​​return​​false​​;​
​String​​t​​=​​line.substring(k.length());​
​return​​parseHMS(t,​​h,​​m,​​sec,​​isTimeOfDay);​

​};​

​Settings​​tmp​​=​​cfg;​
​if​​(!parseLine(l1,​​"start"​​,​ ​tmp.startH,​​tmp.startM,​​tmp.startS,​​true​​))​ ​return​

​false​​;​
​if​​(!parseLine(l2,​​"on"​​,​ ​tmp.onH,​ ​tmp.onM,​ ​tmp.onS,​ ​false​​))​​return​

​false​​;​
​if​​(!parseLine(l3,​​"interval"​​,​​tmp.intH,​ ​tmp.intM,​ ​tmp.intS,​ ​false​​))​​return​

​false​​;​
​if​​(!validateSettings(tmp))​​return​​false​​;​

​cfg​​=​​tmp;​
​return​​true​​;​

​}​

​bool​​saveSettings​​()​​{​
​if​​(!fsBeginOnce())​​return​​false​​;​
​if​​(!validateSettings(cfg))​​return​​false​​;​

​InternalFS.remove(CFG_FILE);​
​File​​f​​=​​InternalFS.open(CFG_FILE,​​FILE_O_WRITE);​
​if​​(!f)​​return​​false​​;​

​String​​out​​=​​"start="​​+​​two(cfg.startH)​​+​​":"​​+​​two(cfg.startM)​​+​​":"​​+​
​two(cfg.startS)​​+​​"​​\n​​"​​;​
​out​​+=​ ​"on="​​+​​two(cfg.onH)​​+​​":"​​+​​two(cfg.onM)​​+​​":"​​+​​two(cfg.onS)​​+​

​"​​\n​​"​​;​
​out​​+=​ ​"interval="​​+​​two(cfg.intH)​​+​​":"​​+​​two(cfg.intM)​​+​​":"​​+​

​two(cfg.intS)​​+​​"​​\n​​"​​;​
​f.write(out.c_str(),​​out.length());​
​f.close();​
​return​​true​​;​

​}​

​Page​​30​​of 36​

​// ===================== RTC SETUP =====================​
​void​​maybeSetRTC​​()​​{​
​String​​ans​​=​​getYesNo(​​"Would you like to change​​RTC? (yes/no)"​​);​
​if​​(ans.equalsIgnoreCase(​​"no"​​))​​return​​;​

​Serial.println(​​"Enter current date and time [YYYY-MM-DD​​HH:MM:SS]:"​​);​
​while​​(​​true​​)​​{​

​String​​s​​=​​readLineBlocking();​
​DateTime​​dt;​
​if​​(parseDateTime(s,​​dt))​​{​
​rtc.adjust(dt);​
​Serial.print(​​"RTC set to: "​​);​
​Serial.println(dt.timestamp());​
​return​​;​

​}​
​Serial.println(​​"Invalid format. Try again [YYYY-MM-DD​​HH:MM:SS]:"​​);​

​}​
​}​

​// ===================== CONFIGURATION =====================​
​void​​printConfiguration​​()​​{​
​DateTime​​now​​=​​rtc.now();​
​DateTime​​firstCycle(now.year(),​​now.month(),​​now.day(),​​cfg.startH,​​cfg.startM,​

​cfg.startS);​
​if​​(firstCycle​​<=​​now)​​firstCycle​​=​​firstCycle​​+​​TimeSpan(​​1​​,​​0​​,​​0​​,​​0​​);​
​TimeSpan​​delta​​=​​firstCycle​​-​​now;​

​Serial.println(​​"=== SYNCRO SYSTEM CONFIGURATION​​==="​​);​
​Serial.print(​​"RTC Time: "​​);​​Serial.println(now.timestamp());​
​Serial.print(​​"Start Time: "​​);​​Serial.print(cfg.startH);​​Serial.print(​​":"​​);​

​Serial.print(cfg.startM);​​Serial.print(​​":"​​);​​Serial.println(cfg.startS);​
​Serial.print(​​"On Duration: "​​);​​Serial.print(cfg.onH);​​Serial.print(​​"h "​​);​

​Serial.print(cfg.onM);​​Serial.print(​​"m "​​);​​Serial.print(cfg.onS);​
​Serial.println(​​"s"​​);​
​Serial.print(​​"Interval: "​​);​​Serial.print(cfg.intH);​​Serial.print(​​"h "​​);​

​Serial.print(cfg.intM);​​Serial.print(​​"m "​​);​​Serial.print(cfg.intS);​
​Serial.println(​​"s"​​);​
​Serial.print(​​"First cycle starts in: "​​);​
​Serial.print(delta.days()*​​24​​+​​delta.hours());​​Serial.print(​​"h​​"​​);​
​Serial.print(delta.minutes()%​​60​​);​​Serial.print(​​"m​​"​​);​
​Serial.print(delta.seconds()%​​60​​);​​Serial.println(​​"s"​​);​
​Serial.println(​​"------------------------------------"​​);​

​}​

​// ===================== SETTINGS PROMPTS =====================​
​// NOTE: Prompts are printed on their own lines (Serial.println),​
​// so they do not appear "next to each other" in Serial Monitor.​
​void​​promptForSettings​​()​​{​
​Settings​​tmp​​=​​cfg;​
​Serial.println(​​"​​\n​​Enter new settings (format HH:MM:SS)."​​);​

​while​​(​​true​​)​​{​
​Serial.println(​​"Start Time [HH:MM:SS]:"​​);​

​Page​​31​​of 36​

​String​​st​​=​​readLineBlocking();​
​int​​h,​​m,​​s;​
​if​​(parseHMS(st,​​h,​​m,​​s,​​true​​))​​{​​tmp.startH​​=​​h;​​tmp.startM​​=​​m;​​tmp.startS​​=​

​s;​​break​​;​​}​
​Serial.println(​​"Invalid format. Try again."​​);​

​}​

​while​​(​​true​​)​​{​
​Serial.println(​​"On Duration [HH:MM:SS]:"​​);​
​String​​on​​=​​readLineBlocking();​
​int​​h,​​m,​​s;​
​if​​(parseHMS(on,​​h,​​m,​​s,​​false​​))​​{​​tmp.onH​​=​​h;​​tmp.onM​​=​​m;​​tmp.onS​​=​​s;​

​break​​;​​}​
​Serial.println(​​"Invalid format. Try again."​​);​

​}​

​while​​(​​true​​)​​{​
​Serial.println(​​"Interval [HH:MM:SS]:"​​);​
​String​​iv​​=​​readLineBlocking();​
​int​​h,​​m,​​s;​
​if​​(parseHMS(iv,​​h,​​m,​​s,​​false​​))​​{​​tmp.intH​​=​​h;​​tmp.intM​​=​​m;​​tmp.intS​​=​​s;​

​break​​;​​}​
​Serial.println(​​"Invalid format. Try again."​​);​

​}​

​if​​(!validateSettings(tmp))​​{​​Serial.println(​​"ERROR:​​Invalid settings."​​);​​return​​;​
​}​
​cfg​​=​​tmp;​
​Serial.println(​​"​​\n​​New settings captured."​​);​

​}​

​// ===================== CONFIRMATION =====================​
​// Simplified flow (as requested):​
​// 1) Ask: "Use these settings?"​
​// - no -> edit settings -> show summary -> repeat​
​// - yes -> ask save-to-flash -> then return (mission arms after this)​
​void​​waitForConfirmation​​()​​{​
​while​​(​​true​​)​​{​

​String​​response​​=​​getYesNo(​​"Use these settings?​​(yes/no)"​​);​

​if​​(response.equalsIgnoreCase(​​"yes"​​))​​{​
​blinkColor(ledGreen,​​250​​);​
​blinkColor(ledGreen,​​250​​);​

​response​​=​​getYesNo(​​"Save these settings to​​flash for next boot? (yes/no)"​​);​
​if​​(response.equalsIgnoreCase(​​"yes"​​))​​{​
​if​​(saveSettings())​​Serial.println(​​"Saved​​to flash."​​);​
​else​​Serial.println(​​"FAILED to save settings."​​);​

​}​​else​​{​
​Serial.println(​​"Not saving (revert to defaults​​or previous saved settings​

​next boot)."​​);​
​}​
​return​​;​​// done: mission arms next​

​Page​​32​​of 36​

​}​

​// "no" means: edit settings​
​Serial.println(​​"Entering configuration mode..."​​);​
​blinkColor(ledRed,​​250​​);​
​promptForSettings();​
​printConfiguration();​

​}​
​}​

​// ===================== ALARMS =====================​
​void​​scheduleNextAlarm​​()​​{​
​DateTime​​now​​=​​rtc.now(),​​nextEvent;​

​if​​(isFirstCycle)​​{​
​nextEvent​​=​​DateTime(now.year(),​​now.month(),​​now.day(),​​cfg.startH,​​cfg.startM,​

​cfg.startS);​
​if​​(nextEvent​​<=​​now)​​nextEvent​​=​​nextEvent​​+​​TimeSpan(​​1​​,​​0​​,​​0​​,​​0​​);​

​}​​else​​{​
​nextEvent​​=​​now​​+​​TimeSpan(​​0​​,​​cfg.intH,​​cfg.intM,​​cfg.intS);​

​}​

​rtc.setAlarm1(nextEvent,​​DS3231_A1_Date);​
​rtc.clearAlarm(​​1​​);​
​Serial.print(​​"Next RTC alarm: "​​);​​Serial.println(nextEvent.timestamp());​

​}​

​// ===================== SETUP / LOOP =====================​
​void​​setup​​()​​{​
​pinMode(MOSFET_PIN,​​OUTPUT);​
​pinMode(ledGreen,​​OUTPUT);​
​pinMode(ledRed,​​OUTPUT);​
​pinMode(rtcAlarmPin,​​INPUT_PULLUP);​

​Serial.begin(​​115200​​);​
​delay(​​1500​​);​

​blinkColor(ledGreen,​​250​​);​​blinkColor(ledRed,​​250​​);​
​blinkColor(ledGreen,​​250​​);​​blinkColor(ledRed,​​250​​);​

​setPower(​​false​​);​
​Wire.begin();​

​if​​(!rtc.begin())​​{​
​Serial.println(​​"RTC not found!"​​);​
​for​​(​​int​​i​​=​​0​​;​​i​​<​​5​​;​​i++)​​{​​blinkColor(ledRed,​​200​​);​​delay(​​100​​);​​}​

​}​

​rtc.clearAlarm(​​1​​);​
​rtc.disableAlarm(​​1​​);​
​rtc.writeSqwPinMode(DS3231_OFF);​

​maybeSetRTC();​ ​// handles prompt internally​

​Page​​33​​of 36​

​if​​(loadSettings())​​Serial.println(​​"Loaded settings​​from flash."​​);​
​else​​Serial.println(​​"No saved settings; using defaults."​​);​

​printConfiguration();​
​waitForConfirmation();​ ​// simplified behavior​

​scheduleNextAlarm();​
​attachInterrupt(digitalPinToInterrupt(rtcAlarmPin),​​onRTCAlarm,​​FALLING);​

​initialized​​=​​true​​;​
​waitingForFirstCycle​​=​​true​​;​
​isFirstCycle​​=​​true​​;​

​Serial.println(​​"Mission armed."​​);​
​}​

​void​​loop​​()​​{​
​if​​(!initialized)​​return​​;​

​if​​(rtcAlarmTriggered)​​{​
​rtcAlarmTriggered​​=​​false​​;​
​rtc.clearAlarm(​​1​​);​

​DateTime​​now​​=​​rtc.now();​
​DateTime​​expectedStart(now.year(),​​now.month(),​​now.day(),​​cfg.startH,​

​cfg.startM,​​cfg.startS);​
​if​​(isFirstCycle​​&&​​now​​<​​expectedStart)​​{​
​Serial.println(​​"RTC alarm early, ignored."​​);​
​return​​;​

​}​

​isFirstCycle​​=​​false​​;​
​waitingForFirstCycle​​=​​false​​;​

​setPower(​​true​​);​
​Serial.print(​​"Power ON at: "​​);​​Serial.println(now.timestamp());​
​blinkColor(ledGreen,​​250​​);​

​unsigned​​long​​onMs​​=​
​(​​unsigned​​long​​)cfg.onH​​*​​3600UL​​*​​1000UL​​+​
​(​​unsigned​​long​​)cfg.onM​​*​​60UL​​*​​1000UL​​+​
​(​​unsigned​​long​​)cfg.onS​​*​​1000UL​​;​

​delay(onMs);​

​setPower(​​false​​);​
​Serial.println(​​"Power OFF."​​);​
​blinkColor(ledRed,​​250​​);​
​delay(​​100​​);​

​scheduleNextAlarm();​
​}​

​Page​​34​​of 36​

​if​​(waitingForFirstCycle​​&&​​millis()​​-​​lastPreStartBlink​​>=​​5000​​)​​{​
​blinkColor(ledGreen,​​200​​);​
​lastPreStartBlink​​=​​millis();​

​}​

​if​​(DEPLOYMENT_MODE)​​__WFI();​
​else​​delay(​​10​​);​

​}​

​Page​​35​​of 36​

​9. Notes​

​Page​​36​​of 36​

